القاگر وسیله ای الکتریکی شبیه سیم پیچ با دو سر اتصال است که برای تولید میدان مغناطیسی و ذخیره انرژی مغناطیسی استفاده می شود.
القاگر می توانند میدان های مغناطیسی را در حجم های کوچک نگه دارند؛ همچنین می توان از آنه برای ذخیره کردن انرژی استفاده کرد.
در مدار شامل القاگری (پیچه یا سیملوله) باتری و رئوستا، آمپرسنج و القاگری است که به طور متوالی به یکدیگر بسته شده اند.
با تغییر مقاومت رئوستا، جریان در مدار تغییر می کند. تغییر جریان در مدار، سبب تغییر میدان مغناطیسی القاگر شده و در نتیجه شار مغناطیسی عبوری از آن نیز تغییر می کند. این فرایند سبب القای نیروی محرکه ای در القاگر می شود که بنابر قانون لنز با تغییر جریان عبوری از آن مخالفت می کند. این پدیده را اثر خود-القاوری نامیده می شود.
تغییر جریان در یک مدار باعث ایجاد نیروی محرکه ای القایی در همان مدار می شود، این پدیده را خود-القاوری می نامند.
نیروی محرکه ی خود القاوری \({\varepsilon _L}\)
اگر جریان گذرنده از سیملوله تغییر کند، به علت تغییر شار مغناطیسی گذرنده از آن، نیروی محرکه ای در خود مدار القا می شود که با عامل تغییر شار مغناطیسی که در اینجا تغییر جریان است مخالفت کند.
1 هرگاه جریان در مدار اصلی رو به افزایش باشد، جهت جریان خود- القاوری خلاف جهت جریان در مدار اصلی است.
2 هرگاه جریان در مدار اصلی رو به کاهش باشد، جهت جریان خود-القاوری هم جهت با جهت جریان در مدار اصلی است.
3 به هر قسمتی از یک مدار که خاصیت خود القاوری داشته باشد، القاگر می گویند.
4 پیچه و سیملوله در مداری با جریان متغیر القاگرند.
5 اثر خود-القاوری مخصوص جریان های متغیر است و در مدار های جریان پیوسته تنها به هنگام قطع و وصل کلید در مدار ایجاد می گردد.
این پارامتر، ویژگی های فیزیکی القاگر را نشان می دهد و به عواملی همچون تعداد دور، طول و سطح مقطع القاگر و جنس هسته ای که داخل آن قرار می گیرد بستگی دارد.
یکای ضریب القاوری در SI، اهم در ثانیه (\(\Omega \times S\)) است که هانری نامیده و با H نشان داده می شود.
ضریب القاوری فقط به مشخصات ساختمانی سیم لوله بستگی دارد.
\(L = \frac{{AK{\mu _0}{N_2}}}{I}\)
در این فرمول
L ضریب القاوری
A مساحت هر حلقه ی سیملوله
K ضریب تراوایی نسبی هسته
\({\mu _0}\) ضریب تراوایی مغناطیسی خلاء
N تعداد دور های سیملوله
مثال
تعداد حلقه های سیملوله ای بدون هسته، به طول \(2/8cm\) و سطح \(10c{m^2}\) چه تعداد باشد تا ضریب القاوری آن \(1H\) شود؟
\(\begin{array}{l}K = 1\\I = 2/8 \times {10^{ - 2}}m\\A = 10 \times {10^{ - 4}}{m^2}\\N = ?\\L = 1H\\{\mu _0} = 4\pi \times {10^{ - 7}}\frac{{Tm}}{A}\\L = \frac{{AK{\mu _0}{N^2}}}{I} \to {N^2} = \frac{{IL}}{{AK{\mu _0}}}\\{N^2} = \frac{{2/8 \times 10 - 2 \times 1}}{{{{10}^{ - 3}} \times 1 \times 4 \times 3/14 \times {{10}^{ - 7}}}} \to {N^2} = 22 \times {10^6} \to N = 4/7 \times {10^3}\end{array}\)
تغییر جریان در یک مدار باعث تغییر شار مغناطیسی در مدار دیگر و ایجاد نیروی محرکه القایی می شود.
با تغییر مقاومت رئوستا و تغییر جریان عبوری از پیچه 1 شار عبوری از پیچه 2 نیز تغییر می کند. این تغییر شار، سبب ایجاد نیروی محرکه القایی در پیچه 2 می شود. هم زمان تغییر جریان در پیچه 2، سبب ایجاد نیروی محرکه القایی در پیچه 1 می گردد.
هنگامی که به دو سر القاگری اختلاف پتانسیل وصل کنیم، از طرف مولد به القاگر انرژی داده می شود. بخشی از این انرژی در مقاومت R تلف شده و بقیه آن در میدان مغناطیسی سیملوله ذخیره می شود. این انرژی از رابطه زیر بدست می آید:
\({U_L} = \frac{1}{2}L{I^2}\)
در این فرمول
\({U_L}\) انرژی ذخیره شده در القاگر
L ضریب القاوری
I شدت جریان در القاگر